
The Elliptic Solvers in the Canadian Limited Area Forecasting Model GEM-LAM 109

The Elliptic Solvers in the Canadian Limited Area Forecasting Model 
GEM-LAM

Abdessamad Qaddouri and Vivian Lee

X 
 

The Elliptic Solvers in the Canadian Limited 
Area Forecasting Model GEM-LAM 

 
Abdessamad Qaddouri and Vivian Lee 

Atmospheric Science and Technology Directorate, Environment Canada 
 Canada 

 
1. Introduction 
 

The Global and Limited area versions of the Canadian global Environmental (GEM) model 
(Coté et al.,1998), currently used for operational numerical weather prediction (NWP) at 
Canadian Meteorological centre (CMC) employ an implicit time discretization on the spatial 
grids of tensors product. This gives rise to a separable 3D elliptic boundary value (EBV) 
problem that must be solved at each model time step. This EBV problem is also found in the 
implicit formulation of the high order diffusion equation which is used in GEM. Most 
models in operational NWP apply this selective diffusion in order to eliminate high wave-
number noise due (for example) to numerical discretization. The solution of the EBV is in 
general, at the heart of most models used for NWP. It is currently solved in the limited area 
version (GEM-LAM) by applying either a direct or an iterative method. 
As in the global GEM model (Qaddouri et al., 1999), the direct method in GEM-LAM model 
is implemented with either fast or slow Fourier transforms. Because of the nature of the 
boundary conditions in GEM-LAM, discrete cosine transforms (DCTs) are use instead of 
discrete Fourier transforms (DFTs). In the case of the slow transform, which involves a full 
matrix multiplication and this will be referred as MXMA, the cost per grid point increases 
linearly with the number of grid points along the transform direction and if this number 
divides properly, the fast Fourier transforms (FFT) can be used. It is important to find ways 
to optimize this slow transform as it dominates the cost of the solver and, it does represent a 
significant fraction of the total cost of the model time step. The iterative method is 
implemented in GEM-LAM to reduce the cost of the slow transform in the elliptic solver and 
it is based on a preconditioned Generalized Minimal REsidual (GMRES) algorithm (Saad, 
1996). The GEM-LAM model is parallelized with a hybrid use of MPI and OpenMP. In the 
parallel version of the direct solver, four global communications are used which could be 
very time-consuming when the number of processors increases. In the iterative solver, each 
processor communicates with its neighbours and global communications are limited only to 
calculating a global dot product. 
In the following sections, EBV problem to be solved is presented and the direct and iterative 
methods are described. The high order diffusion is discussed in section 3 while the 
parallelization of direct solution is shown in section 4. Results from numerical experiments 
are reported and analyzed in section 5, and the paper is concluded in section 6. 
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2. Positive Definite Helmholtz 
 

The problem to be solved is a 3D separable EBV problem which after a vertical separation, it 
is reduced to a set of horizontal positive definite Helmholtz problems (Coté et al., 1998). 
To illustrate the derivation of a Helmholtz problem  from an implicit time discretization  of 
the terms responsible for the gravity wave, and  to show the nature of the horizontal 
boundary conditions for the GEM-LAM model , the following simple 2D linear Shallow 
water equations is integrated in a limited area of a non-rotating sphere with radius a : 
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where the unknowns are the wind images U, V (wind times  cos /a), and   is the 
perturbation geopotential from the reference geopotential  . Using the staggered Arakawa 
C-grid (Arakawa et al., 1977), the wind components are placed in the middle of the lines 
joining the geopotential points. By employing the Crank-Nicholson time discretization , the 
resulting equations at the forecast time t are: 
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Note that the boundary conditions on U and V are applied at N

~,~ 0  and Mθ
~θ~0 . Then apply 

the wall boundary conditions 
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which are provided by a global model (or a larger LAM model) for 00 V,U,U N  and MV to the 
target limited area model. The operator   is defined as iii   1 . Integrating the 
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Two equations from (7) are re-written to express at two neighbouring points (i+1,j) and (i,j) 
in U-grid while two equations from (8) are re-written to express at two neighbouring points 
(i,j+1) and (i,j) in V-grid. These four resulting equations are added and combined with 
equation (9) to obtain the following discretized elliptic equation (11) for the geopotential 
only. This equation is called the (positive definite) Helmholtz equation by the NWP 
community. 
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In GEM-LAM with NK  vertical levels, we have NK  different constants  ,k  k=1,NK 
which are eigenvalues of a generalized eigenvalue problem like in Eq. 21 but along the 
vertical direction. After expanding the variables in z-direction eigenvectors, a vertical 
separation is done in the direct solver, and NK  Helmholtz problems like the one in Eq.11 
are obtained. Since the 3D problem is vertically separable, only the horizontal aspect needs 
to be considered though the numerical results obtained are for the full 3D elliptic solver.  

 

Because of the nature of the horizontal boundary conditions in GEM-LAM, a brief 
discussion on the discrete cosine Fourier transforms in the context of differential equations 
is presented in the following sub-section. 

 
2.1 Discrete Cosine Fourier transforms 
Like discrete Fourier transforms (DFTs), discrete cosine transforms (DCTs) express a 
function in terms of a sum of sinusoids with different frequencies and amplitudes. DCT uses 
only cosine functions, while DFT uses both cosine and sine in the form of complex 
exponentials. The DFT implies a periodic extension of the function true along the longitude 
axis in the GEM global atmospheric model. The expression of the matrix P gives a clear 
idea about the boundary conditions implicitly used for the Helmholtz problem in the 
longitudinal directions in GEM-LAM. It can be seen that an even extension of the functions, 
possible by the use of DCT, is needed (Denis et al., 2004). Consider the analysis of right hand 
side of the equation (11) for each latitude j, the discrete cosine transform is 
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This DCT used in GEM-LAM implies this following boundary condition: ji,r  is even around 

the grid point 21i , even around 21 NIi and jk,
~r is even around the wave-number 

0k and around NIk  . The DCT matrix is made orthogonal by scaling with a factor 
NI2 and if NI divides properly, the Fast Fourier transform (FFT) is used. 

 
2.2 Direct Solution of Helmholtz problem 
The direct solution of (11) is obtained by exploiting its separability, and expanding  in  -
direction eigenvectors that diagonalize A , i.e. 
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which is used to project (11) on each mode in turn. The result can then be written in matrix 
form as  
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In GEM-LAM with NK  vertical levels, we have NK  different constants  ,k  k=1,NK 
which are eigenvalues of a generalized eigenvalue problem like in Eq. 21 but along the 
vertical direction. After expanding the variables in z-direction eigenvectors, a vertical 
separation is done in the direct solver, and NK  Helmholtz problems like the one in Eq.11 
are obtained. Since the 3D problem is vertically separable, only the horizontal aspect needs 
to be considered though the numerical results obtained are for the full 3D elliptic solver.  

 

Because of the nature of the horizontal boundary conditions in GEM-LAM, a brief 
discussion on the discrete cosine Fourier transforms in the context of differential equations 
is presented in the following sub-section. 

 
2.1 Discrete Cosine Fourier transforms 
Like discrete Fourier transforms (DFTs), discrete cosine transforms (DCTs) express a 
function in terms of a sum of sinusoids with different frequencies and amplitudes. DCT uses 
only cosine functions, while DFT uses both cosine and sine in the form of complex 
exponentials. The DFT implies a periodic extension of the function true along the longitude 
axis in the GEM global atmospheric model. The expression of the matrix P gives a clear 
idea about the boundary conditions implicitly used for the Helmholtz problem in the 
longitudinal directions in GEM-LAM. It can be seen that an even extension of the functions, 
possible by the use of DCT, is needed (Denis et al., 2004). Consider the analysis of right hand 
side of the equation (11) for each latitude j, the discrete cosine transform is 
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This DCT used in GEM-LAM implies this following boundary condition: ji,r  is even around 

the grid point 21i , even around 21 NIi and jk,
~r is even around the wave-number 

0k and around NIk  . The DCT matrix is made orthogonal by scaling with a factor 
NI2 and if NI divides properly, the Fast Fourier transform (FFT) is used. 

 
2.2 Direct Solution of Helmholtz problem 
The direct solution of (11) is obtained by exploiting its separability, and expanding  in  -
direction eigenvectors that diagonalize A , i.e. 
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and the property of orthogonality in 
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which is used to project (11) on each mode in turn. The result can then be written in matrix 
form as  

           IIIII I rA   , (23) 
where 

    ;PPI
I

 A       PI I  . (24) 
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The algorithm can then be summarized as: 
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I
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3. synthesis of the solution,    I
j
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I
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
 . 

It is well known that for a uniform  -grid, the modes I are proportional to the usual 
Fourier modes and the analysis and synthesis steps can be implemented with a real Fourier 
transform, and if furthermore NI factorizes properly, the Fast Fourier Transform (FFT) 
algorithm can be used, otherwise these steps are implemented with a full matrix 
multiplication (MXMA). In GEM-LAM, I  are the cosine functions as in equation (19). 

 
2.3 Iterative solution of Helmholtz problem  
The equation (11) can also be solved by a robust parallel preconditioned GMRES algorithm 
where block-Jacobi iteration is used as a preconditioner (single level additive Schwarz). The 
blocks correspond to a different direct solution of the local Helmholtz problem in sub-
domains. The GMRES code used here is the same parallel code developed by Saad and 
Malevsky (Saad & Malevsky, 1995), where a reverse communication mechanism is 
implemented in order to avoid passing a large list of arguments to the routines and, the data 
structure is left suitable for all possible types of preconditioners. The code can be read as 
follows: 

Icode =0 
1 continue  
Call gmres(_) 
If (icode.eq.1) then 
 Call preconditioner() 
Goto 1 
Else if (icode.eq.2) 
Call Matrix-vector() 
Goto 1 
Endif. 

 
For each subdomain (processor), the preconditioner is called locally as a direct solution like 
the paragraph above but it only uses the slow transform where the matrix multiplication 
(MXMA) uses local data. It is known here that the preconditioning operation involves no 
inter-processors communication. In the matrix-vector operation, each processor will need to 
communicate with its neighbours. 

 
3. The 2D high order implicit diffusion 
 

The problem to solve is a high order diffusion equation which takes the form of the time 
dependent equation 
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
 m

m
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
 1

21 , (25) 

 

where   is any prognostic variable, the integer m can be any multiple of 2 and denotes the 
order. The diffusion coefficient  is considered constant for simplicity. The diffusion is 
periodically applied to specific meteorological fields and its effect is equivalent to applying 
diffusion in the prognostic equation for a period of time. In the operational GEM-LAM, only 
the direct solution (sec.3.2) is implemented for the 2D high order diffusion which considers 
either the slow (MXMA) or fast (FFT) Fourier transforms. The work for the iterative solution 
has not been completed.  

 
3.1 Temporel Discretization 
Implicit discretization of the equation (25) is 
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Integration of the equation (26) gives the following equation 
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i.e., 
Rm   , (28) 

 
where R is  the forcing term,   is a prescribed parameter. Numerical solution of (28) on the 
sphere requires a conservative discretization of m , with a consistent treatment of the 
boundary condition. In this paper, with m = 4 for example, the equation (28) would become 
the following two second order equations to be solved: 
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and  is the longitude,  is the latitude and a is the earth’s radius. 

 
3.2 Spatial discretization 
The spatial discretization is on the Arakawa C-grid as described in section 2. This is a 
tensorial grid. The discrete form of (29) is 
 

  ;,IZ rA  θ    ,Z,I 0θ  A  (31) 
where 

     ,PPPP    A  (32) 
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Fourier modes and the analysis and synthesis steps can be implemented with a real Fourier 
transform, and if furthermore NI factorizes properly, the Fast Fourier Transform (FFT) 
algorithm can be used, otherwise these steps are implemented with a full matrix 
multiplication (MXMA). In GEM-LAM, I  are the cosine functions as in equation (19). 

 
2.3 Iterative solution of Helmholtz problem  
The equation (11) can also be solved by a robust parallel preconditioned GMRES algorithm 
where block-Jacobi iteration is used as a preconditioner (single level additive Schwarz). The 
blocks correspond to a different direct solution of the local Helmholtz problem in sub-
domains. The GMRES code used here is the same parallel code developed by Saad and 
Malevsky (Saad & Malevsky, 1995), where a reverse communication mechanism is 
implemented in order to avoid passing a large list of arguments to the routines and, the data 
structure is left suitable for all possible types of preconditioners. The code can be read as 
follows: 

Icode =0 
1 continue  
Call gmres(_) 
If (icode.eq.1) then 
 Call preconditioner() 
Goto 1 
Else if (icode.eq.2) 
Call Matrix-vector() 
Goto 1 
Endif. 

 
For each subdomain (processor), the preconditioner is called locally as a direct solution like 
the paragraph above but it only uses the slow transform where the matrix multiplication 
(MXMA) uses local data. It is known here that the preconditioning operation involves no 
inter-processors communication. In the matrix-vector operation, each processor will need to 
communicate with its neighbours. 

 
3. The 2D high order implicit diffusion 
 

The problem to solve is a high order diffusion equation which takes the form of the time 
dependent equation 
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where   is any prognostic variable, the integer m can be any multiple of 2 and denotes the 
order. The diffusion coefficient  is considered constant for simplicity. The diffusion is 
periodically applied to specific meteorological fields and its effect is equivalent to applying 
diffusion in the prognostic equation for a period of time. In the operational GEM-LAM, only 
the direct solution (sec.3.2) is implemented for the 2D high order diffusion which considers 
either the slow (MXMA) or fast (FFT) Fourier transforms. The work for the iterative solution 
has not been completed.  

 
3.1 Temporel Discretization 
Implicit discretization of the equation (25) is 
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i.e., 
Rm   , (28) 

 
where R is  the forcing term,   is a prescribed parameter. Numerical solution of (28) on the 
sphere requires a conservative discretization of m , with a consistent treatment of the 
boundary condition. In this paper, with m = 4 for example, the equation (28) would become 
the following two second order equations to be solved: 
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and  is the longitude,  is the latitude and a is the earth’s radius. 

 
3.2 Spatial discretization 
The spatial discretization is on the Arakawa C-grid as described in section 2. This is a 
tensorial grid. The discrete form of (29) is 
 

  ;,IZ rA  θ    ,Z,I 0θ  A  (31) 
where 

     ,PPPP    A  (32) 
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where  is the notation for tensor product and 
     ;RPP r      ,PP,I    (33) 

 
3.3 Direct Solution 
 

The direct solution of (15) is obtained by exploiting the separability as in the Helmholtz 
problem, and expanding   and Z in  -direction eigenvectors that diagonalize A , i.e. 
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and the property of orthogonality 
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is used to project (15) on each mode in turn. The result written in matrix form is obtained as 
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The algorithm can then be summarized as: 
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2. solution of the problems in equation (37), 
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As seen in the direct solution of the Helmholtz problem, a uniform  -grid the modes I are 
proportional to the usual Fourier modes. The analysis and synthesis steps can then be 
simply implemented with a real Fourier transform, and if NI also factorizes properly, the 
Fast Fourier Transform (FFT) algorithm can be applied. If the NI cannot be divided 
properly, these steps would become the “slow” transform case using the full matrix 
multiplication (MXMA). The NI problems in (37) can be then transformed to NI block 
tridiagonal problems to solve. With contrast to (Yong et al., 1994) where the recursive 
method in (Lindzen & Kuo, 1969) is used, a block LU factorization is used in this paper.  
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i.e., 
BXM  , (40) 

 
where M is a matrix of dimension NJ2 , or a block tridiagonal matrix of dimension NJ 
where each element is a 2 by 2 matrix. We can then represent M in the form  
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where blocks iE and iF are 2 by 2 diagonal matrices, and iD are 2 by 2 full matrices. Let D be 
the block-diagonal matrix consisting of the diagonal blocks iD  , L the block strictly-lower 
triangular matrix consisting of the sub-diagonal blocks iF , and U the block strictly-upper 
triangular matrix consisting of the super-diagonal blocks iE . Then the above matrix M has 
the form 

UDLM  . (42) 
 
A block LU factorization of M is defined by 
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where L and U are the same as above, and i are of dimension 2 by 2 and are defined by the 
recurrence : 
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where the 2 by 2 1

i matrices are explicitly and exactly calculated. It is obvious that this set 
up is done once and its initial cost would be amortized over many solutions. The solution 
consists of standard forward elimination and backward substitution for the following 
triangular systems: 
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The algorithm can now then be summarized as: 
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is used to project (15) on each mode in turn. The result written in matrix form is obtained as 
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The algorithm can then be summarized as: 

1. analysis of the right-hand side:     ,ij
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2. solution of the problems in equation (37), 
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As seen in the direct solution of the Helmholtz problem, a uniform  -grid the modes I are 
proportional to the usual Fourier modes. The analysis and synthesis steps can then be 
simply implemented with a real Fourier transform, and if NI also factorizes properly, the 
Fast Fourier Transform (FFT) algorithm can be applied. If the NI cannot be divided 
properly, these steps would become the “slow” transform case using the full matrix 
multiplication (MXMA). The NI problems in (37) can be then transformed to NI block 
tridiagonal problems to solve. With contrast to (Yong et al., 1994) where the recursive 
method in (Lindzen & Kuo, 1969) is used, a block LU factorization is used in this paper.  
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i.e., 
BXM  , (40) 

 
where M is a matrix of dimension NJ2 , or a block tridiagonal matrix of dimension NJ 
where each element is a 2 by 2 matrix. We can then represent M in the form  
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where blocks iE and iF are 2 by 2 diagonal matrices, and iD are 2 by 2 full matrices. Let D be 
the block-diagonal matrix consisting of the diagonal blocks iD  , L the block strictly-lower 
triangular matrix consisting of the sub-diagonal blocks iF , and U the block strictly-upper 
triangular matrix consisting of the super-diagonal blocks iE . Then the above matrix M has 
the form 
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A block LU factorization of M is defined by 
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where the 2 by 2 1

i matrices are explicitly and exactly calculated. It is obvious that this set 
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The above algorithm has been extended to the diffusion equation of any order .,,,m 8642 . 
Step 1 which consists of the analysis of the right-hand side and Step 3, which is the synthesis 
of the solution are almost identical. The elements of block matrices L, U and D become 
dimensions 2m by 2m . 

 
4. Parallel Direct Algorithms 
 

The domain decomposition (mapping of grid points to processors) in GEM as in most large 
scale weather prediction models, is purely horizontal. This means that each processor owns 
all the NK vertical grid points in a given horizontal sub-domain. A parallel Direct solver for 
Helmholtz problem has been developed in (Qaddouri et al., 1999) and the same idea is 
applied for the high order diffusion equation. The direct solution algorithm presented in the 
previous sections has a great potential for vectorization and parallelism since at each step, 
there is recursive work along only one direction at a time, leaving the others available for 
vectorization. The remapping (or transposition) method is used for interprocessors 
communication.  
The algorithm necessitates 4 global communication steps and reads for a problem with 

NKNJNI  grid points and QP processors grid: 
1. transposition of the right-hand sides to bring all the  -direction grid points in each 

processor, the distribution becomes in  -z subdomains: 
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2. analysis of the right-hand sides, 
3. transposition of the data to bring all the  -direction grid points in each processor, 

the distribution becomes in z-   subdomains: 
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4. solutions of the block tri-diagonal problems, 
5. inversion of the second transpose with the solutions of step 4: 
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6. synthesis of the solutions, 
7. inversion of the first transposition, the solutions are again distributed in  -  

subdomains: 
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5. Numerical Tests 
 

All numerical tests presented in this chapter are done using the current forecast model 
GEM-LAM. In any given meteorological site, there are always time constraints when 
implementing operational runs. At CMC, both MPI and OpenMP are used to parallelize the 
GEM model in order to gain the best performance possible. The MPI is used for the 
communication between the sub-domains which has a global effect on the model. The 
OpenMP is applied to each sub-domain on selected time consuming functions or loops 
where their algorithms have no data dependencies and no communication. All tests were 
done on the IBM p575+ cluster with 121 compute nodes where each node contains 16 
processors. Within each node, the 16 processors share a memory of 52G. The timings 
presented in Table 1 measure all the major components of a GEM-LAM model run 
optimized as much as possible using the combined effect of MPI and OpenMP. The model 
configuration for this table is from one of CMC’s operational LAM (2.5km horizontal 
uniform-resolution) where NI=565, NJ=494 and NK=58 and the MPI topology was set at P=6, 
(processors along the longitude), Q=12, (processors along the latitude) and the OpenMP 
configuration was set to OpenMP=4. Note that timings of the solver and of the diffusion are 
not negligible compared to the other model components. 
 

Components Time (sec) Percentage of  
Total runtime 

Right-Hand Side 26.29 .90 
Advection 626.66 21.39 
Preparation for Non-Linear 47.49 1.62 
Non-Linear 125.59 4.29 
Solver (fft) 187.03 6.38 
Back Substitution 94.33 3.22 
Physics 985.61 33.65 
Horizontal Diffusion 205.32 7.01 
Vertical Sponge 67.12 2.29 
Vertical Diffusion 335.0 11.44 
Nesting and blending 127.37 4.34 
Initialization and Setup 32.5 1.11 
Output dynamic fields 54.42 1.86 
Output physics fields 14.56 0.50 
Total 2929.29 100.0 

Table 1. Breakdown of model timings in the major components of a Canadian 2.5km Limited 
Area Model (LAM) over the eastern part of Canada for an integration of 24 hours on 18 
nodes (6 x 12 x 4 PEs) . 

 
5.1 Numerical Tests using MPI only 
The experiments are designed to test the effects of MPI and OpenMP separately on the 
performance for the different solvers (direct MXMA-based , direct FFT-based and Iterative) 
and for the FFT and MXMA in implicit horizontal diffusion. The model configuration used 
here for these tests is a LAM (limited area modelling) at a 2.5km horizontal resolution with a 
setup similar to an operational run. In the experiments to test the MPI only, the number of 
processors were increased using MPI and at the same time, the number of computational 
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applied for the high order diffusion equation. The direct solution algorithm presented in the 
previous sections has a great potential for vectorization and parallelism since at each step, 
there is recursive work along only one direction at a time, leaving the others available for 
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4. solutions of the block tri-diagonal problems, 
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5. Numerical Tests 
 

All numerical tests presented in this chapter are done using the current forecast model 
GEM-LAM. In any given meteorological site, there are always time constraints when 
implementing operational runs. At CMC, both MPI and OpenMP are used to parallelize the 
GEM model in order to gain the best performance possible. The MPI is used for the 
communication between the sub-domains which has a global effect on the model. The 
OpenMP is applied to each sub-domain on selected time consuming functions or loops 
where their algorithms have no data dependencies and no communication. All tests were 
done on the IBM p575+ cluster with 121 compute nodes where each node contains 16 
processors. Within each node, the 16 processors share a memory of 52G. The timings 
presented in Table 1 measure all the major components of a GEM-LAM model run 
optimized as much as possible using the combined effect of MPI and OpenMP. The model 
configuration for this table is from one of CMC’s operational LAM (2.5km horizontal 
uniform-resolution) where NI=565, NJ=494 and NK=58 and the MPI topology was set at P=6, 
(processors along the longitude), Q=12, (processors along the latitude) and the OpenMP 
configuration was set to OpenMP=4. Note that timings of the solver and of the diffusion are 
not negligible compared to the other model components. 
 

Components Time (sec) Percentage of  
Total runtime 

Right-Hand Side 26.29 .90 
Advection 626.66 21.39 
Preparation for Non-Linear 47.49 1.62 
Non-Linear 125.59 4.29 
Solver (fft) 187.03 6.38 
Back Substitution 94.33 3.22 
Physics 985.61 33.65 
Horizontal Diffusion 205.32 7.01 
Vertical Sponge 67.12 2.29 
Vertical Diffusion 335.0 11.44 
Nesting and blending 127.37 4.34 
Initialization and Setup 32.5 1.11 
Output dynamic fields 54.42 1.86 
Output physics fields 14.56 0.50 
Total 2929.29 100.0 

Table 1. Breakdown of model timings in the major components of a Canadian 2.5km Limited 
Area Model (LAM) over the eastern part of Canada for an integration of 24 hours on 18 
nodes (6 x 12 x 4 PEs) . 

 
5.1 Numerical Tests using MPI only 
The experiments are designed to test the effects of MPI and OpenMP separately on the 
performance for the different solvers (direct MXMA-based , direct FFT-based and Iterative) 
and for the FFT and MXMA in implicit horizontal diffusion. The model configuration used 
here for these tests is a LAM (limited area modelling) at a 2.5km horizontal resolution with a 
setup similar to an operational run. In the experiments to test the MPI only, the number of 
processors were increased using MPI and at the same time, the number of computational 
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points were maintained the same for each tile. In other words, each tile always worked on 
approximately 96 by 96 points by 80 levels in order to analyze the behaviour of the 
communication costs as the number of processors increases. Figure 1 displays the regions of 
interest in the series of MPI test runs. The number of grid points along the latitude was 
chosen in such a way that the FFT solver could also be included in the study. Table 2 
displays the timings of some of the major components of the model for the MPI test runs 
where the MPI topology is denoted as PxQ and the OpenMP=1. It can be seen up to 25 
nodes that, the increase in timings is mostly due to communication in the solver and in the 
diffusion (FFT-based) whereas, in the physics and the advection modules, there were no 
communications at all. In the experiments using 100 nodes, almost the entire cluster was 
utilized. There seemed to be a dramatic increase in the timings of almost all the model 
components for these huge runs and it is suspected that either the memory or the 
communication was limited. Further investigation is needed for these large integrations as it 
is anticipated that this could be the size of domain needed for the future of weather 
forecasting. 
 

 
Fig. 1. LAM 2.5km resolution topography used in the MPI test runs where the results are 
recorded in Table 2. The number of vertical levels is 80. 
 
 
 
 

 

Nodes P x Q 
(NI x NJ pts) 

# of PEs FFT solver (secs) 
(count=100) 

Advection 
(secs) 

Physic 
(secs) 

FFT Hzd (secs)
(count=100) 

1 4x4 
(396x396) 

16 23.32 149 241 47 

4 8x8 
(780x780) 

64 30.41 153 241 52 

9 12x12 
(1164x1164) 

144 36.7 148 238 53 

16 16x16 
(1548x1548) 

256 44.1 152 238 61 

25 20x20 
(1932x1932) 

400 57.0 151 240 77 

100 40x40 
(3852x3852) 

1600 109 190 239 133 

Table 2. Breakdown of model timings in the major components of the MPI test runs using a 
LAM grid at 2.5km resolution with 80 levels. The grid is increased to give almost the same 
number of points per tile for each test run (There is no OpenMP).  
 
Applying the same MPI tests (identical configurations) but just changing the solvers, Table 3 
displays the timing comparisons between using the FFT-based direct solver, the MXMA-
based direct solver and the newly implemented PGMRES-based iterative solver. Note that 
the optimization for the iterative solver has not yet been completely refined but, it looks 
promising as the number of iterations required remains relatively steady.  
 

 
Nodes 

PxQ 
(NI x NJ ) points 

 
# of PEs 

FFT 
solver 
 (secs) 

MXMA 
solver 
 (secs) 

Iterative 
solver 
 (secs) 

# of 
iterations 

1 4x4 
(396x396) 

16 23.31 56.5 76.0 4 

4 8x8 
(780x780) 

64 30.41 104.9 89.6 4 

9 12x12 
(1164x1164) 

144 36.7 149.7 95.5 5 

16 16x16 
(1548x1548) 

256 44.1 201.9 121.31 5 

25 20x20 
(1932x1932) 

400 57.0 282.6 132.9 5 

100 40x40 
(3852x3852) 

1600 109 N/A 195.85 5 

 
Table 3. Comparison of timings between using the FFT, MXMA and the iterative Jacobi 
solver in the MPI test runs (The number of solver calls is 100). 
 
A plot of the timings versus the number of nodes used per run is shown in Figure 2 and it 
can be seen that the timings become longer due to increased communication as more nodes 
were added. In the runs of the measured times in the FFT solver, there is an increase of 86 
seconds from a run using one node to 100 nodes giving a factor of increase of 3.7 times over 
the one node run. By doing the same comparison for the runs using the iterative solver, 
there is an increase of 120 seconds which gives a factor increase of 1.6 times over its one 
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components for these huge runs and it is suspected that either the memory or the 
communication was limited. Further investigation is needed for these large integrations as it 
is anticipated that this could be the size of domain needed for the future of weather 
forecasting. 
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Table 2. Breakdown of model timings in the major components of the MPI test runs using a 
LAM grid at 2.5km resolution with 80 levels. The grid is increased to give almost the same 
number of points per tile for each test run (There is no OpenMP).  
 
Applying the same MPI tests (identical configurations) but just changing the solvers, Table 3 
displays the timing comparisons between using the FFT-based direct solver, the MXMA-
based direct solver and the newly implemented PGMRES-based iterative solver. Note that 
the optimization for the iterative solver has not yet been completely refined but, it looks 
promising as the number of iterations required remains relatively steady.  
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Table 3. Comparison of timings between using the FFT, MXMA and the iterative Jacobi 
solver in the MPI test runs (The number of solver calls is 100). 
 
A plot of the timings versus the number of nodes used per run is shown in Figure 2 and it 
can be seen that the timings become longer due to increased communication as more nodes 
were added. In the runs of the measured times in the FFT solver, there is an increase of 86 
seconds from a run using one node to 100 nodes giving a factor of increase of 3.7 times over 
the one node run. By doing the same comparison for the runs using the iterative solver, 
there is an increase of 120 seconds which gives a factor increase of 1.6 times over its one 
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node run. This shows that the communications cost more in proportion to the cost of 
computation in the FFT solver than in the iterative solver. It would be worth the effort to 
improve the performance of the iterative solver more within one node by using an 
approximate local solver which will diminish the computing time spent in the 
preconditioning operation. 

 
Fig. 2. Timings for FFT, MXMA and Iterative solvers in MPI test runs (computation on 
approximately 96 pts x 96 pts x 80 levels per processor) 
 
Similar results are seen in Table 4 when comparing the two types of horizontal diffusion. All 
numerical tests presented here for the horizontal diffusion were using the sixth order 
implicit horizontal diffusion (m=6 in Eq.25). 
 

Nodes P x Q 
(NI x NJ points) 

# of PEs FFT diffusion 
(secs) 

MXMA diffusion 
(secs) 

1 4x4 
(396x396) 

16 47 73 

4 8x8 
(780x780) 

64 52 129 

9 12x12 
(1164x1164) 

144 53 179 

16 16x16 
(1548x1548) 

256 61 252 

25 20x20 
(1932x1932) 

400 77 360 

100 40x40 
(3852x3852) 

1600 133 N/A 

Table 4. Comparison of timings between using the FFT and MXMA in the horizontal 
diffusion solver within the MPI test runs (The number of diffusion calls is 100). 

 

5.2 Numerical Tests on OpenMp 
Tests for OpenMP were made using two different MPI configurations but using the same 
LAM grid configuration. The region of interest of the grid is shown in Figure 1 using 1548 
by 1548 grid points. The FFT results are not included in this study as the OpenMP section 
for it was not correctly implemented. One of the OpenMP tests made is to vary the OpenMP 
on a MPI topology of 16 by 16 and these results are shown in Table 5. The other test is to 
vary the OpenMP on a MPI topology of 8 by 8 and these results are shown in Table 6. The 
MPI topology and OpenMP configuration is denoted by (PxQxOpenMP). Note that with the 
same size LAM grid, the configuration with more MPI is more efficient than with the one 
with more OpenMP. Given the same number of PEs (using 256 or using 512), the MPI 
topology of 16 by 16 out-performs the one with more weight given to the OpenMP. This is 
an expected result as the model was parallelized with MPI entirely, and then with OpenMP 
in sub-sections of the code. 
 

OpenM
P 

# of 
PEs 

MXMA 
solver 
(secs) 

MXMA 
Relativ
e 
Speedu
p 

Jacobi 
solver 
(secs) 

Jacobi 
Relativ
e 
Speedu
p 

1 256 201.9 1 121.31 1 
2 512 111.17 1.8 69.82 1.74 
4 1024 68.13 2.96 45.53 2.6 

Table 5. Comparison of timings between using the Jacobi Iterative and the MXMA solver 
within the OpenMP test runs where the grid is (1548x1548x80Levels) using the MPI 
topology of (16x16xOpenMP). The number of solver calls is 100. 
 

OpenM
P 

# of 
PEs 

MXMA 
solver 
(secs) 

MXMA 
Relativ
e 
Speedu
p 

Jacobi 
solver 
(secs) 

Jacobi 
Relativ
e 
Speedu
p 

1 64 1135.08 1 1443.6 1 
2 128 631.04 1.8 824.89 1.72 
4 256 231.25 4.9 216.71 6.66 
8 512 136.21 8.33 137.73 10.46 

Table 6. Comparison of timings between using the Jacobi Iterative and the MXMA solver 
within the OpenMP test runs where the grid is (1548x1548x80Levels) using the MPI 
topology of (8x8xOpenMP). The number of solver calls is 100. 

 
6. Conclusion 
 

In this paper, we have examined the performance of the elliptic solvers in the context of 
atmospheric modelling with a limited area grid. By using only the MPI paradigm (see 
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processors (in order that each processor keeps same amount of work), the number of 
iterations needed for the iterative solver to converge remains constant. We can say that the 
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node run. This shows that the communications cost more in proportion to the cost of 
computation in the FFT solver than in the iterative solver. It would be worth the effort to 
improve the performance of the iterative solver more within one node by using an 
approximate local solver which will diminish the computing time spent in the 
preconditioning operation. 

 
Fig. 2. Timings for FFT, MXMA and Iterative solvers in MPI test runs (computation on 
approximately 96 pts x 96 pts x 80 levels per processor) 
 
Similar results are seen in Table 4 when comparing the two types of horizontal diffusion. All 
numerical tests presented here for the horizontal diffusion were using the sixth order 
implicit horizontal diffusion (m=6 in Eq.25). 
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say that the non-scalability in real time is due to local inter-processor communications 
involved in matrix-vector operations and also due to the global communications (all-reduce) 
in the global dot product operations. It was also shown that by using the hybrid of MPI and 
OpenMP correctly, the parallel direct and iterative solvers present good scalability and even 
super-scalability in the aspect of OpenMP (Table.6). By implementing all these tests, we 
have also discovered that OpenMP was not well applied in the Fast Direct solver which is 
why the poor results are omitted from this paper. As it was noted earlier, the iterative solver 
needs more work in its optimization. In the future, we will introduce the second level in the 
additive Schwartz preconditioner (coarse grid) and we will employ a local approximate 
solver instead of an exact local direct solver which should reduce the computing cost. 
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